Search OEDI Data
Showing results 1 - 25 of 425.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
GEO3D Three-Dimensional Computer Model of a Ground Source Heat Pump System
This file is the setup file for GEO3D, a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat tran...
Menart, J. Wright State University
Jun 07, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
GEO2D Two-Dimensional Computer Model of a Ground Source Heat Pump System
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the worki...
Menart, J. Wright State University
Jun 07, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Drilling Monitoring Program: Computer Program on Heat Transfer Temperature Distribution Hydraulic Calculations for Abrasive Jet Drilling
A program was created to evaluate the downhole conditions occurring in a FLASH ASJ drilling system. the program is meant to aid the operator of a coiled tubing rig in maintaining optimum drilling conditions.
Ozbayoglu, E. Impact Technologies LLC
Jan 01, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Coupling Subsurface and Above-Surface Models for Optimizing the Design of Borefields and District Heating and Cooling Systems
Accurate dynamic energy simulation is important for the design and sizing of district heating and cooling systems with geothermal heat exchange for seasonal energy storage. Current modeling approaches in building and district energy simulation tools typically consider heat conduct...
Hu, J. et al Lawrence Berkeley National Laboratory
Jan 31, 2022
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Seedling Project Report: A Novel Heat Pump Integrated Underground Thermal Energy Storage for Shaping Electric Demand of Buildings
This report presents a preliminary assessment of the technical feasibility of utilizing underground thermal energy storage (UTES) and electric-driven heat pumps (EDHPs) to enable flexible behind-the-meter electric demand of buildings while meeting their thermal demands in an energ...
Liu, X. et al Oak Ridge National Laboratory
May 31, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: TOUGH2-CSM Simulation of Embedded Natural Fractures and Chemical Tracer Transport and Sorption
The EGS Collab SIGMA-V project is a multi-lab and university collaborative research project that is being undertaken at the Sanford Underground Research Facility (SURF) in South Dakota. The project consists of studying stimulation, fluid-flow, and heat transfer processes at a scal...
Johnston, B. et al National Renewable Energy Laboratory
Jun 07, 2019
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
ResStock: Annual Baseline Results with Component Loads
The ResStock Analysis Tool was developed by NREL with support from the U.S. Department of Energy to provide a new approach to large-scale residential analysis by combining large public and private data sources, statistical sampling, detailed sub hourly building simulations, and hi...
Speake, A. et al National Renewable Energy Lab
Mar 03, 2023
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Oct 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Altona Field Lab Inverse Model WRR 2020
Includes data for measured inert tracer breakthrough curves first reported in Hawkins (2020) (Water Resources Research). In addition, this submission includes the production well temperature measurements first reported in Hawkins et al. (2017a) (Water Resources Research, volume 53...
Tester, J. Cornell University
Jan 01, 2015
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Stimulation at Desert Peak Modeling with the Coupled THM Code FEHM
Numerical modeling of the 2011 shear stimulation at the Desert Peak Well 27-15 using a coupled thermal-hydrological-mechanical simulator. This submission contains the finite element heat and mass transfer (FEHM) executable code for a 64-bit PC Windows-7 machine, and the input and ...
Kelkar, S. et al Los Alamos National Laboratory
Apr 30, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Nov 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations
This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key too...
Templeton, D. et al Lawrence Livermore National Laboratory
Apr 18, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Thermal Properties of Geologic Formations in Illinois Basin
Thermal property data for rocks and and minerals and unconsolidated (glacial) sediments units from within and outside the Illinois Basin were compiled for modeling heat transport in the subsurface.
Lin, Y. et al University of Illinois
Mar 30, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation