OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 1 - 25 of 28.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"PNG"×
Wind Energy×

Ridgelines: Department of Interior Definition

This dataset represents ridgelines as defined by the Department of Interior (DOI): "Areas within 660 feet of the top of the ridgeline, where a ridgeline has at least 150 feet of vertical elevation gain with a minimum average slope of 10 percent between the ridgeline and the base."...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

Wind Energy: Bans or Moratoriums (2022)

This dataset identifies counties and municipalities that had a wind energy ban or moratorium as of April 2022. A TIF data file and a PNG map of the data are provided, showing areas where wind energy bans or moratoriums exist across the contiguous United States. For further detail...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

Wind Turbine Oil and Gas Pipeline Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from oil and gas pipelines. A setback requirement is a minimum distance from a pipeline that an energy project may be developed. As of April 2022, no ordinances were discovered for any counties. Such ordinances are likely to...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

Wind Turbine Road Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from roads based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a road that an energy project may be developed, and these varied widely across the counties in which they exis...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Railroad Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from railroad based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a railroad that an energy project may be developed, and these varied widely across the counties in which th...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Transmission Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from transmission based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from transmission infrastructure that an energy project may be developed, and these varied widely across the...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Structure Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from structures based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from a structure that an energy project may be developed, and these varied widely across the counties in which...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Wind Turbine Water Setbacks: Ordinances (2022) and Extrapolated Trends, 115 Hub Height 170 Rotor Diameter

This dataset represents wind energy setback requirements from water based on existing county ordinances as of April 2022. A setback requirement is a minimum distance from water that an energy project may be developed, and these varied widely across the counties in which they exist...
Geospatial Data Science, N. and Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
5 Resources
0 Stars
Publicly accessible

Next Generation Weather Radar (NEXRAD) Setback (4-km)

The Next Generation Weather Radar (NEXRAD) system is a network of doppler radar operated jointly by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force. This dataset represents 4-kilometer setback requirements typically applied to ...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

Next Generation Weather Radar (NEXRAD) Radar Line-of-Sight

The Next Generation Weather Radar (NEXRAD) system is a network of doppler radar operated jointly by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force. This dataset represents a line-of-sight for each radar station. Radar line-of-...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_esrl.graphics.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.02.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_wfip2.icbc.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_esrl.icbc.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.rap_esrl.icbc.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.01.fcst.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcst.02.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

wfip2.model/refcstext.01.fcst.01

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible

Airport and Heliport Setbacks

This dataset represents a first-order quantification of airport and heliport setback requirements based on the Federal Aviation Administration (FAA) 14 CFR Part 77.9. It defines the following FAA notice criteria that we use to create runway buffers. Runways longer than 3,200 feet ...
Geospatial Data Science, N. National Renewable Energy Laboratory (NREL)
Jan 01, 2024
3 Resources
0 Stars
Publicly accessible

Ceilometer ND Ceilometer, Wasco Airport Raw Data

**Overview** Measurements of cloud base height and vertical visibility using pulsed infrared (910 nm) diode laser LIDAR technology. The instrument can detect up to three cloud layers simultaneously. **Data Details** Measurements taken in the standard measuring mode, where the C...
Fernando, J. et al Wind Energy Technologies Office (WETO)
Jan 14, 2015
1 Resources
0 Stars
Publicly accessible

wfip2.model/realtime.hrrr_wfip2.graphics.02

**Overview** The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
12Next >>
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • Contact OpenEI Help
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service