Search OEDI Data
Showing results 1 - 9 of 9.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
University of Illinois Campus Deep Direct-Use Feasibility Study Geocellular Modeling
This submission includes 3-D geocellular model files with formation top and formation thickness data for the St. Peter and Mt. Simon Sandstones in University of Illinois Deep Direct-Use project area. An input parameters file is also included for the St. Peter Sandstone.
Damico, J. University of Illinois
May 07, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geological Characterization of the St. Peter Sandstone
These studies undertook detailed analyses of the formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone in the Illinois Basin, including the St. Peter Sandstone, for geological storage and mineral potential.
Lin, Y. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Geocellular model of St. Peter Sandstone for University of Illinois at Urbana-Champaign DDU Feasibility Study
The geocellular model of the St. Peter Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 ...
Damico, J. University of Illinois
Dec 31, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Porosity and Permeability of Rock Formations
Porosity and permeability data from published and unpublished sources for the St. Peter and Mt. Simon Sandstones in the Illinois Basin.
Damico, J. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Feasibility of a Deep Direct-Use Geothermal System at the University of Illinois Urbana-Champaign
Paper authored by Stumpf et al. for the 2018 Geothermal Resources Council Annual Meeting held in Reno, NV USA. Included with the paper is the Microsoft PowerPoint presentation made at the GRC meeting and data tables associated with some of the figures.
Stumpf, A. et al University of Illinois
Dec 31, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Regional Geology
Links to papers and reports describing the structure and character of the Illinois Basin geology.
Included are descriptions of the two reservoirs that are being modeled for the DDU feasibility project at University of Illinois, the St. Peter and Mt. Simon Sandstones.
Lin, Y. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geology Log and Drilling Prospectus
Geology log and drilling prospectus for University of Illinois at Urbana-Champaign (UIUC) Energy Farm.
Nelson, W. University of Illinois
Apr 16, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Preliminary Geothermal Reservoir Model
Preliminary geothermal reservoir simulations were performed using a homogeneous static model to evaluate and understand the effects of fluid and rock properties that could influence the delivery of thermal energy in a doublet system. A 5000 feet by 5100 feet by 500 feet homogeneou...
Okwen, R. University of Illinois
May 08, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Geocellular Model of Mt. Simon Sandstone for University of Illinois at Urbana-Champaign DDU feasibility study
The geocellular model of the Mt. Simon Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 ...
Damico, J. University of Illinois
Dec 31, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible