OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 51 - 65 of 65.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"conventional"×
Geothermal Data Repository (GDR)×

High-Pressure and High-Temperature (HPHT) Lost Circulation Material (LCM) Testing

High-pressure and high-temperature (HPHT) lost circulation material (LCM) rheology test results, LCM particle size distributions (PSD) analysis, and HPHT LCM fluid loss test results. Three academic papers / reports derived from this research are also presented.
Salehi, S. and Vivas, C. University of Oklahoma
Nov 30, 2021
6 Resources
0 Stars
Publicly accessible

Community Resilience through Low-Temperature Geothermal Reservoir Thermal Energy Storage

Submitted data include simulations related to underground thermal battery (UTB) simulations described in Modeling and efficiency study of large scale underground thermal battery deployment, presented at GRC, October 2021. The UTB is comprised of a tank of water, a helical heat ex...
Nico, P. et al Lawrence Berkeley National Laboratory
Jan 29, 2022
4 Resources
0 Stars
Publicly accessible

Utah FORGE: Well Data for Student Competition

Well 58-32 (previously labeled MU-ESW1) was drilled near Milford Utah during Phase 2B of the FORGE Project to confirm geothermal reservoir characteristics met requirements for the final FORGE site. Well Accord-1 was drilled decades ago for geothermal exploration purposes. While ...
Podgorney, R. et al Idaho National Laboratory
Dec 07, 2018
12 Resources
0 Stars
Publicly accessible

Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada MS Thesis

Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range pr...
Dering, G. and Faulds, J. University of Nevada
May 31, 2013
1 Resources
0 Stars
Publicly accessible

Structural Controls of the Neal Hot Springs Geothermal System, Eastern Oregon

Detailed geologic mapping (1:24,000 scale), structural and geochemical analyses, and integration of available geophysical and well-field data were utilized to assess the structural controls of the Neal Hot Springs geothermal field in eastern Oregon. The geothermal field lies withi...
Edwards, J. and Faulds, J. University of Nevada
May 31, 2013
1 Resources
0 Stars
Publicly accessible

Utah FORGE: Well 58-32 Stimulation Conference Paper and Data

The U.S. Department of Energy's (U.S. DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is a field laboratory that provides a unique opportunity to develop and test new technologies for characterizing, creating and sustaining Enhanced Geothermal Systems (EGS) in ...
Best, S. Energy and Geoscience Institute at the University of Utah
Apr 24, 2019
2 Resources
0 Stars
Publicly accessible

Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

Structural controls of 426 geothermal systems in the Great Basin region including western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east-central Nevada, eastern California, southern Oregon, and western Utah were analyzed with literature research, air photos...
Faulds, J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of McGinness Hills Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of Neal Hot Springs Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

DEEPEN Leapfrog Geodata Model Cleaned and Reformatted Exploration Datasets from Newberry Volcano

DEEPEN stands for DE-risking Exploration of geothermal Plays in magmatic ENvironments. As part of the DEEPEN 3D play fairway analysis (PFA) conducted at Newberry Volcano for multiple play types (conventional hydrothermal, superhot EGS, and supercritical), existing geoscientific e...
Pauling, H. et al National Renewable Energy Laboratory
Jun 30, 2023
22 Resources
0 Stars
Publicly accessible

DEEPEN: Newberry Volcano MT and Gravity Data 2022 and 2023 Acquisition and Processing

As part of DEEPEN (DE-risking Exploration of geothermal Plays in magmatic ENvironments), a 3D play fairway analysis (PFA) was conducted at Newberry Volcano in Central Oregon for multiple play types (conventional hydrothermal, superhot EGS, and supercritical). For use in this PFA, ...
Shultz, A. et al Enthalpion Energy
Jun 30, 2023
8 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: Microseismic Monitoring

The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first expe...
Schoenball, M. et al Lawrence Berkeley National Laboratory
Jul 29, 2019
46 Resources
0 Stars
Publicly accessible
<< Previous123
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service