Search OEDI Data
Showing results 51 - 75 of 318.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Lidar LMCT WTX WindTracer, Gordon Ridge Raw Data
**Overview**
Long-range scanning Doppler lidar located on Gordon Ridge. The WindTracer provides high-resolution, long-range lidar data for use in the WFIP2 program.
**Data Details**
The system is configured to take data in three different modes. All three modes take 15 minutes ...
Barr, K. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence E Raw Data
**Overview**
Sequence E: Yaw Releases (P)
This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds
ranged from 7 m/s to 17 m/s. Initial yaw angles of ±90° were achieved. The blade tip pitch was
3°. The rotor rotated at 72 RPM. Blade and probe...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence R Raw Data
**Overview**
Sequence R: Step AOA, No Probes (P)
This sequence was designed to quantify the effect of the five-hole probes on the 3-D blade static
angle-of-attack response in the presence of rotational influences by repeating Sequence K without
five-hole probes. This test sequen...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Geostationary Satellite Retrievals with Irradiances and Cloud Properties / Processed Data
**Overview**
The Geostationary Operational Environmental Satellite (GOES) records sky brightness temperatures and irradiances at several wavelengths. From these the cloud microphysical and optical properties can be routinely retrieved. These properties are derived using the techn...
Surleta, T. Wind Energy Technologies Office (WETO)
Apr 13, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Additional Data Focused on Phase 1 Geared Toward Computational Fluid Dynamics (CFD) validation
**Overview**
A new validation campaign was developed within the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) to better understand the complex interactions between components of a floating wind system (e.g., columns, pontoons, etc.) in ...
Robertson, A. Wind Energy Technologies Office (WETO)
Apr 08, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence K Raw Data
**Overview**
Sequence K: Step AOA, Probes (P)
This sequence was designed to quantify the 3-D blade static angle-of-attack response in the
presence of rotational influences by varying the blade pitch angle. Sequence K used an upwind,
rigid turbine with a 0° cone angle. The wind ...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 27, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
UAE6 Wind Tunnel Tests Data UAE6 Sequence L Raw Data
**Overview**
Sequence L: Step AOA, Parked (P)
This sequence was designed to quantify the 3-D blade static angle-of-attack response in the
absence of rotational influences by varying the blade pitch angle. This test sequence used an
upwind, rigid turbine with a 0° cone angle. Wi...
Fingersh, L. Wind Energy Technologies Office (WETO)
Nov 28, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Shortwave, Longwave Radiometer ESRL RadSys, Condon Derived Data
**Overview**
This dataset showcases the role of shortwave and longwave radiation in planetary boundary layer (PBL) development and winds. Radiation budget is part of the energy budget.
**Data Details**
Wasco Airport, OR: 45.58991, 120.67196, 1488 ft
**Data Quality**
Refer t...
Lantz, K. and Long, C. Wind Energy Technologies Office (WETO)
Feb 22, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Shortwave, Longwave Radiometer ESRL RadSys, Condon Reviewed Data
**Overview**
This dataset showcases the role of shortwave and longwave radiation in planetary boundary layer (PBL) development and winds. Radiation budget is part of the energy budget.
**Data Details**
Wasco Airport, OR: 45.58991, 120.67196, 1488 ft
**Data Quality**
Refer t...
Lantz, K. and Long, C. Wind Energy Technologies Office (WETO)
Feb 08, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Shortwave, Longwave Radiometer ESRL RadSys, Rufus Derived Data
**Overview**
This dataset showcases the role of shortwave and longwave radiation in planetary boundary layer (PBL) development and winds. Radiation budget is part of the energy budget.
**Data Details**
Wasco Airport, OR: 45.58991, 120.67196, 1488 ft
**Data Quality**
Refer t...
Lantz, K. and Long, C. Wind Energy Technologies Office (WETO)
Feb 07, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Shortwave, Longwave Radiometer ESRL RadSys, Rufus Reviewed Data
**Overview**
This dataset showcases the role of shortwave and longwave radiation in planetary boundary layer (PBL) development and winds. Radiation budget is part of the energy budget.
**Data Details**
Wasco Airport, OR: 45.58991, 120.67196, 1488 ft
**Data Quality**
Refer t...
Lantz, K. and Long, C. Wind Energy Technologies Office (WETO)
Feb 07, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible