Search OEDI Data
Showing results 251 - 275 of 839.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
October 2013 Green Machine Florida Canyon Hourly Data
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant...
Thibedeau, J. ElectraTherm, Inc.
Oct 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Rare Earth Desorption Test with Citrate and Bicarbonate
LBT (lanthanide binding tag) cells were grown overnight in LB media with 0.05% Amp. 1:100 subculture taken from overnights, grown for 2 hours. LBT was induced with 0.002% arabinose added for 3 hours. REE adsorption was done by combining 350 ul (0.25% 1M MES, 12.5 uM Tb, and 12.5 u...
Jiao, Y. et al Lawrence Livermore National Laboratory
Jun 01, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Hathaway Solar Patriot house
This Dataset contains field research raw data, analysis spreadsheet, photos, and final report from the Hathaway Solar Patriot House Building America Case Study project.
Norton, P. National Renewable Energy Laboratory
Jun 09, 2016
6 Resources
0 Stars
In curation
6 Resources
0 Stars
In curation
Risk Factor Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)
This submission contains information used to compute the risk factors for the GPFA-AB project. The risk factors are natural reservoir quality, thermal resource quality, potential for induced seismicity, and utilization. The methods used to combine the risk factors included taking ...
E., T. Cornell University
Sep 30, 2015
191 Resources
0 Stars
Publicly accessible
191 Resources
0 Stars
Publicly accessible
Appalachian Basin Play Fairway Analysis Thermal Risk Factor and Quality Analyses
*This submission revises the analysis and products for Thermal Quality Analysis for the northern half of the Appalachian Basin (https://gdr.openei.org/submissions/638)*
This submission is one of five major parts of a Low Temperature Geothermal Play Fairway Analysis. Phase 1 of the...
Jordan, T. Cornell University
Aug 02, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE: Well Data for Student Competition
Well 58-32 (previously labeled MU-ESW1) was drilled near Milford Utah during Phase 2B of the FORGE Project to confirm geothermal reservoir characteristics met requirements for the final FORGE site.
Well Accord-1 was drilled decades ago for geothermal exploration purposes. While ...
Podgorney, R. et al Idaho National Laboratory
Dec 07, 2018
12 Resources
0 Stars
Publicly accessible
12 Resources
0 Stars
Publicly accessible
ALFA Non-linear Ocean Waves and PTO Control Strategy
Data from Advanced Laboratory and Field Arrays (ALFA) Non-linear Ocean Waves and Power Take-Off (PTO). Control Strategy project conducted at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University in 2019/2020. Contains two zip files (ALFANL.zip, ALFANL2.zip)...
Bosma, B. et al Pacific Marine Energy Center (PMEC)
Oct 28, 2019
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
NWEI Azura RTI 1/20th Model Validation Wave Tank Test Data
Data from the 1/20th wave tank test of the RTI model. Northwest Energy Innovations (NWEI) has licensed intellectual property from RTI, and modified the PTO and retested the 1/20th RTI model that was tested as part of the Wave Energy Prize. The goal of the test was to validate NWEI...
Ling, B. and Lettenmaier, T. Northwest Energy Innovations
May 08, 2017
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Washington Geothermal Play Fairway Analysis Technical Report
An investment of $0.7M from the Geothermal Technology Office for Phase 2 of Play Fairway Analysis in Washington State improved existing favorability models and increased model confidence. New 1:24,000-scale geological mapping, 15 detailed geophysical surveys, 2 passive seismic sur...
Steely, A. et al Washington Geological Survey
Dec 20, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE Hydrothermal Friction-Hydraulic Transmissivity Laboratory Experiments
Submission includes data from laboratory slide-hold-slide tests, combined with flow through tests, conducted on Westerly granite with 30 degree sawcut. Tests were conducted with a constant confining pressure of 30 MPa with an average pore pressure of 10 MPa at temperatures of 23 a...
Jeppson, T. and Lockner, D. U.S. Geological Survey
Feb 24, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
NWEI Azura December 2016 Data
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing spe...
Lettenmaier, T. Northwest Energy Innovations
Dec 29, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible