Search OEDI Data
Showing results 151 - 175 of 198.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
StingRAY WEC Risk Register
Risk Registers for major subsystems of the StingRAY WEC completed in compliance with the DOE Risk Management Framework developed by NREL.
Rhinefrank, K. Columbia Power Technologies, Inc.
Feb 24, 2017
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Tidal Energy Resource Characterization, Bottom Lander Measurements, Cook Inlet, AK, 2021
These datasets are from tidal resource characterization measurements collected on the Terrasond High Energy Oceanographic Mooring (THEOM) from 1 July 2021 to 30 August 2021 (60 days) in Cook Inlet, Alaska. The lander was deployed at 60.7207031 N, 151.4294998 W in ~50 m of water.
...
Kilcher, L. and McVey, J. National Renewable Energy Laboratory
Jul 01, 2021
25 Resources
0 Stars
Publicly accessible
25 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.graphics.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 14, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.02.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Feb 09, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.rap_esrl.icbc.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Nov 19, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.01.fcst.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.02.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcstext.01.fcst.01
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Raft River Geothermal Area Logical and Fact Data Models
This submission includes fact and logical data models for geothermal data concerning wells, fields, power plants and related analyses at Raft River, ID. The fact model is available in VizioModeler (native), html, UML, ORM-Specific, pdf, and as an XML Spy Project. An entity-relatio...
Cuyler, D. Sandia National Laboratories
Jul 19, 2012
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
wfip2.model/realtime.hrrr_wfip2.graphics.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Dec 16, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
wfip2.model/refcst.coldstart.icbc.02
**Overview**
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the ph...
Macduff, M. Wind Energy Technologies Office (WETO)
Jan 31, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Active Source 3D Seismic Tomography of Brady Hot Springs Geothermal Field, Nevada
We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable inst...
Parker, L. University of Wisconsin
Aug 09, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
DAISY Benchmark Performance Data
This repository contains the underlying data from benchmark experiments for Drifting Acoustic Instrumentation SYstems (DAISYs) in waves and currents described in "Performance of a Drifting Acoustic Instrumentation SYstem (DAISY) for Characterizing Radiated Noise from Marine Energy...
Polagye, B. et al University of Washington
Sep 28, 2024
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Sodar ND Scintec MFAS Wind Profiler with RASS, Rufus Raw Data
**Overview**
The data provide vertical mean profiles of wind and temperature.
**Data Details**
* Data averaged over an interval of 30 minutes.
* Time stamp is included in each data file.
* Location: John Day/Rufus Water Treatment Plant (45.690842,-120.745751).
* Site Elevat...
Fernando, J. et al Wind Energy Technologies Office (WETO)
Dec 01, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
DASH Slow Strain Rates from Brady Hot Springs Geothermal Field during PoroTomo Deployment Period
This submission contains slow strain rates summed to radians over 30 second intervals [rad/s] derived from horizontal distributed acoustic sensing measurements (DASH) of Brady geothermal field during PoroTomo deployment (2016-Mar-14 to 2016-Mar-26). There is one file correspondin...
Reinisch, E. et al University of Wisconsin
Jun 27, 2018
20 Resources
0 Stars
Publicly accessible
20 Resources
0 Stars
Publicly accessible
Pilgrim Hot Springs: GEOPHIRES Inputs and Outputs for Direct-Use Geothermal District Heating and Cooling
This dataset includes files for a techno-economic analysis conducted using the GEOPHIRES simulator to examine the feasibility of expanding a larger district heating site in a remote location: Pilgrim Hot Springs, Alaska. Files included here are GEOPHIRES inputs and outputs for fiv...
Pauling, H. et al National Renewable Energy Laboratory
Mar 21, 2024
21 Resources
0 Stars
Publicly accessible
21 Resources
0 Stars
Publicly accessible
StingRAY Updated WEC Risk Registers
Updated Risk Registers for major subsystems of the StingRAY WEC completed according to the methodology described in compliance with the DOE Risk Management Framework developed by NREL.
Rhinefrank, K. and Ondusko, M. Columbia Power Technologies, Inc.
Jun 27, 2018
17 Resources
0 Stars
Publicly accessible
17 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Annual Average)
This shapefile represents annual average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm water intak...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Summer Average)
This shapefile represents seasonal summer average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm wa...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation