Search OEDI Data
Showing results 1 - 5 of 5.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Admiralty Inlet Hub-Height Turbulence Measurements from June 2012
This data is from measurements at Admiralty Head, in Admiralty Inlet. The measurements were made using an IMU equipped ADV mounted on a mooring, the 'Tidal Turbulence Mooring' or 'TTM'. The inertial measurements from the IMU allows for removal of mooring motion in post processing....
Kilcher, L. National Renewable Energy Laboratory
Jun 18, 2012
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Admiralty Inlet Advanced Turbulence Measurements: May 2015
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). Thes...
Kilcher, L. National Renewable Energy Laboratory
May 18, 2015
18 Resources
0 Stars
Publicly accessible
18 Resources
0 Stars
Publicly accessible
Admiralty Inlet Advanced Turbulence Measurements: June 2014
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid...
Kilcher, L. National Renewable Energy Laboratory
Jun 30, 2014
26 Resources
0 Stars
Publicly accessible
26 Resources
0 Stars
Publicly accessible
Linearized Distribution Optimal Power Flow for OEDI SI
This research is to meant to demonstrate the OEDI SI use case for distributed optimal power flow (DOPF). The goal was to formulate the optimal power flow problem in the distribution system for active and reactive power setpoints of PV systems using topology information and voltage...
Sadnan, R. et al Pacific Northwest National Laboratory
Oct 03, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Wind and Structural Loads on Parabolic Trough Solar Collectors at Nevada Solar One
Wind loading is a main contributor to structural design costs of Concentrating Solar Power (CSP) collectors, such as heliostats and parabolic troughs. These structures must resist the mechanical forces generated by turbulent wind. At the same time, the reflector surfaces must exhi...
Egerer, U. et al National Renewable Energy Laboratory (NREL)
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible