Search OEDI Data
Showing results 1 - 9 of 9.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset
The BUTTER-E Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset adds node-level energy consumption data from watt-meters to the primary sweep of the BUTTER Empirical Deep Learning Dataset. This dataset contains energy consumption and performance data from 63,52...
Tripp, C. et al National Renewable Energy Laboratory
Dec 30, 2022
9 Resources
1 Stars
Publicly accessible
9 Resources
1 Stars
Publicly accessible
BUTTER Empirical Deep Learning Dataset
The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four le...
Tripp, C. et al National Renewable Energy Laboratory
May 20, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
SMART-DS Synthetic Electrical Network Data OpenDSS Models for SFO, GSO, and AUS
The SMART-DS datasets (Synthetic Models for Advanced, Realistic Testing: Distribution systems and Scenarios) are realistic large-scale U.S. electrical distribution models for testing advanced grid algorithms and technology analysis. This document provides a user guide for the data...
Palmintier, B. et al National Renewable Energy Laboratory (NREL)
Dec 18, 2020
5 Resources
1 Stars
Publicly accessible
5 Resources
1 Stars
Publicly accessible
Airfoil Computational Fluid Dynamics 9k shapes, 2 AoA's
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 8,996 airfoil shapes, computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes ...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Airfoil Computational Fluid Dynamics 2k shapes, 25 AoA's, 3 Re numbers
This dataset contains aerodynamic quantities including flow field values (momentum, energy, and vorticity) and summary values (coefficients of lift, drag, and momentum) for 1,830 airfoil shapes computed using the HAM2D CFD (computational fluid dynamics) model. The airfoil shapes w...
Ramos, D. et al National Renewable Energy Laboratory (NREL)
Feb 10, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
2021 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies
Starting in 2015 NREL has presented the Annual Technology Baseline (ATB) in an Excel workbook that contains detailed cost and performance data, both current and projected, for renewable and conventional technologies. The workbook includes a spreadsheet for each technology. This ve...
Vimmerstedt, L. et al National Renewable Energy Laboratory (NREL)
Jul 12, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible