Search OEDI Data
Showing results 1 - 10 of 10.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Utah FORGE 3-2535: Preliminary Report on Development of a Reservoir Seismic Velocity Model
This report describes the development of a preliminary 3D seismic velocity model at the Utah FORGE site and first results from estimating seismic resolution in the generated fracture volume during Stage 3 of the April 2022 stimulation.
A preliminary 3D velocity model for the larg...
Gritto, R. Array Information Technology
Jan 30, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
INTEGRATE Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements
The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements) project is developing a new inverse-design capability for the aerodynamic design of wind turbine rotors using invertible neural networks. This AI-based design techno...
Vijayakumar, G. et al National Renewable Energy Laboratory (NREL)
May 04, 2021
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files
This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Artificial Intelligence for Robust Integration of AMI and Synchrophasor Data to Significantly Boost Solar Adoption
The overarching goal of the project is to create a highly efficient framework of machine learning (ML) methods that provide consistent and accurate real-time knowledge of system states from diverse advanced metering infrastructure (AMI) devices and phasor measurement units (PMUs) ...
Ayyanar, R. et al Arizona State University
Feb 01, 2025
12 Resources
0 Stars
Publicly accessible
12 Resources
0 Stars
Publicly accessible
Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report
This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE 6-3712: Report on a Data Foundation for Real-Time Identification of Microseismic Events
This submission is a technical report for the Probabilistic Estimation of Seismic Response Using Physics Informed Recurrent Neural Networks project. The report describes the process of extracting events from the borehole seismic sensors. To be effective once deployed, the process ...
Williams, J. et al Global Technology Connection, Inc.
Jan 21, 2025
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE: Development of a Reservoir Seismic Velocity Model and Seismic Resolution Study
This is data from and a final report on the development of a 3D velocity model for the larger FORGE area and on the seismic resolution in the stimulated fracture volume at the bottom of well 16A-32. The velocity model was developed using RMS velocities of the seismic reflection su...
Vasco, D. and Chan, C. Array Information Technology
Apr 30, 2022
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs
Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible