Search OEDI Data
Showing results 1 - 12 of 12.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico
Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files
This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Matlab Scripts and Sample Data Associated with Water Resources Research Article
Scripts and data acquired at the Mirror Lake Research Site, cited by the article submitted to Water Resources Research:
Distributed Acoustic Sensing (DAS) as a Distributed Hydraulic Sensor in Fractured Bedrock
M. W. Becker(1), T. I. Coleman(2), and C. C. Ciervo(1)
1 California St...
Becker, M. and Coleman, T. California State University
Jul 18, 2015
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
TEAMER: Tidal Energy Resource Characterization and Model Validation via the Assessment of Distributed Current Measurements from microFloat Swarms, Data and Post-Access Report
This project evaluated how high-resolution, spatially distributed field data can be used to refine and validate site-scale hydrodynamic simulations of tidal channels. Use of such spatially-distributed field observations or site-scale hydrodynamic simulations will be needed for pro...
Harrison, T. et al University of Washington (NNMREC) Applied Physics Lab
Aug 20, 2020
20 Resources
0 Stars
Publicly accessible
20 Resources
0 Stars
Publicly accessible
Utah FORGE 2-2446: Connecting In Situ Stress and Wellbore Deviation to Near-Well Fracture Complexity using Phase-Field Simulations
This report presents a series of numerical experiments investigating the relationships among near-well fracture complexity, in situ stress conditions, and wellbore deviation. Using a phase-field modeling approach, the study explores how factors such as stress regimes, wellbore ori...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE 2-2446: Characterizing Stress Roughness Through Simulation of Hydraulic Fracture Growth
This dataset covers work that investigated the apparent toughness anisotropy at Utah FORGE by comparing microseismic data with stress profiles from field measurements. The study analyzes the hydraulic fracture growth of Stage 3 at Well 16A(78)-32 using MEQ data, calibrating a nume...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests: Hydraulic Data
Hydraulic responses from periodic hydraulic tests conducted at the Mirror Lake Fractured Rock Research Site, during the summer of 2015. These hydraulic responses were measured also using distributed acoustic sensing (DAS) which is cataloged in a different submission under this gr...
Cole, M. California State University
Jul 31, 2015
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Microseismic Monitoring
The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first expe...
Schoenball, M. et al Lawrence Berkeley National Laboratory
Jul 29, 2019
46 Resources
0 Stars
Publicly accessible
46 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible