Search OEDI Data
Showing results 1 - 25 of 53.
Show
results per page.
Order by:
Available Now:
Research Areas
Accessibility
Data Type
Organization
Source
CODAS Data from Oliktok Point, Beaufort Sea, Alaska
Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) data collected from the Beaufort Sea, Alaska, using ~37.4 km of dark telecommunications fiber located at Oliktok Point, Alaska. Data were collected with a Silixa iDAS, using 10 m gauge length, 2 m spatial resolution, and 1000 H...
Baker, M. and Abbott, R. Sandia National Laboratories
Aug 08, 2023
23 Resources
0 Stars
Publicly accessible
23 Resources
0 Stars
Publicly accessible
Wave Energy Prize 1/20th Testing Sea Potential DUO Point Absorber
Data from the 1/20th scale testing data completed on the Wave Energy Prize for the Sea Potential team, including the 1/20th scale test plan, raw test data, video, photos, and data analysis results.
The top level objective of the 1/20th scale device testing is to obtain the necess...
Scharmen, W. Ricardo Detroit Technical Center
Sep 23, 2016
48 Resources
0 Stars
Publicly accessible
48 Resources
0 Stars
Publicly accessible
Salton Sea Geodatabase for Geothermal Exploration Artificial Intelligence
These files contain the geodatabases related to Salton Sea Geothermal Field. It includes all input and output files used with the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (po...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Cape EGS: Frisco 2-P Well Stimulation Microseismic Data
This dataset contains microseismic data acquired during the Frisco 2-P well stimulation project led by Fervo Energy, conducted between June 1 and June 11, 2024, near the Utah FORGE geothermal site. The microseismic data was collected from various Utah FORGE wells: via Distributed ...
Dadi, S. and Titov, A. Fervo Energy
Sep 19, 2024
26 Resources
0 Stars
Publicly accessible
26 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Annual Average)
This shapefile represents annual average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm water intak...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Summer Average)
This shapefile represents seasonal summer average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm wa...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) Sea Surface Temperature (Winter Average)
This shapefile represents seasonal winter average sea surface temperature recordings.
The sea surface temperature is the temperature of the warm water source used by an OTEC plant. This is defined to be near the sea surface at a depth of 20 m, the approximate depth of a warm wa...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Cape EGS: Frisco Pad Wells Flow Test Microseismic Data
This dataset contains microseismic data acquired during the Frisco pad flow test project led by Fervo Energy, conducted between July 17th Aug 12th 2024, near the Utah FORGE geothermal site. The microseismic data was collected from various Utah FORGE wells: via Distributed Acoustic...
Dadi, S. and Kanu, O. Fervo Energy
Nov 06, 2024
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Appendices for Geothermal Exploration Artificial Intelligence Report
The Geothermal Exploration Artificial Intelligence looks to use machine learning to spot geothermal identifiers from land maps. This is done to remotely detect geothermal sites for the purpose of energy uses. Such uses include enhanced geothermal system (EGS) applications, especia...
Duzgun, H. et al Colorado School of Mines
Jan 08, 2021
12 Resources
0 Stars
Publicly accessible
12 Resources
0 Stars
Publicly accessible
NREL Global Offshore Wind GIS Data
GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).
Wind resource based on NOAA Blended Sea Winds and monthly wind speed at 30km resolution from 1987-2005, using a 0.11 wind sheer to extrapolate 10m 90m. Annual average >= 10 months o...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
4 Resources
0 Stars
In curation
4 Resources
0 Stars
In curation
Washington Air-Sea Interaction Research Facility Waves and Currents Test Data
This archive includes data from the University of Washington WASIRF (Washington Air-Sea Interaction Research Facility) flume. WASIRF is a laboratory testing tank at the Northwest National Marine Renewable Energy Center designed to investigate wind-wave-current interactions. It inc...
Colosimo, P. University of Washington (NNMREC) Applied Physics Lab
Feb 23, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Centipod WEC, Advanced Controls, WaveDyn Models
Archive containing the WaveDyn models used for analysis of the Centipod WEC with and without Advanced Controls, i.e. the WaveDyn files contain a baseline model which can be run alone, and a model predictive control (MPC) model which must be run when connected to the MPC controller...
McCall, A. Dehlsen Associates, LLC
Feb 15, 2016
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Fallon FORGE: 3D Geologic Model
The 3D geologic model for the Fallon for site was constructed in EarthVision software using methods similar to (Moeck et al., 2009, 2010; Faulds et al., 2010b; Jolie et al., 2012, 2015; Hinz et al., 2013a; Siler and Faulds, 2013; Siler et al., 2016a, b) References are included in ...
Blankenship, D. and Siler, D. Sandia National Laboratories
Mar 01, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 14ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 14ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 20ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer ...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Annual Average)
This shapefile represents the annual average depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer th...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Summer Average)
This shapefile represents the seasonal summer depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling Depth Profile 8ºC (Winter Average)
This shapefile represents the seasonal winter depth profile to reach water at a temperature of 8ºC.
Sea water cooling can be used for industrial or residential cooling needs where heat must be rejected. A typical resource for direct air-conditioning applications is no warmer t...
Langle, N. and Laboratory, N. National Renewable Energy Laboratory
Nov 25, 2014
2 Resources
0 Stars
In curation
2 Resources
0 Stars
In curation
MASK2B Initial Results from Wave Tank Test of Closed-Loop WEC Control
This dataset covers the MASK2B wave tank experiment focused on a more complete study of one degree of freedom (1DOF) control of the WEC was considered, including maximization of electrical power, multi-objective performance mapping, and implementation of a novel predictionless con...
Coe, R. et al Sandia National Laboratories
May 25, 2018
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Wave Measurements taken NW of Culebra Is., PR, 2023
Wave and sea surface temperature measurements collected by a Sofar Spotter buoy in 2023. The buoy was deployed on July 27, 2023 at 11:30 UTC northwest of Culebra Island, Puerto Rico, (18.3878 N, 65.3899 W) and recovered on Nov 5, 2023 at 12:45 UTC.
Data are saved here in netCDF ...
McVey, J. et al Pacific Northwest National Laboratory
Jul 27, 2023
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Turbine Depth Optimization Study, Admiralty Inlet, WA
The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu.
Kawase, M. et al University of Washington
Nov 22, 2009
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible