OpenEI: Energy Information
  • Open Energy Data Initiative (OEDI)
  • My User
    • Sign Up
    • Login
OEDI logo
  • Data
    • View All Submissions
    • Data Lakes
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Contact OpenEI Help
  • About
  • Search

Search OEDI Data

Showing results 1 - 4 of 4.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Research Areas
Accessibility
Data Type
Organization
Source
"lab hydroshear"×
Big Data×

Super-Resolution for Renewable Resource Data and Urban Heat Islands (Sup3rUHI)

Super-Resolution for Renewable Resource Data and Urban Heat Islands (Sup3rUHI) introduces machine learning methods to incorporate high-resolution Urban Heat Island (UHI) effects into low-resolution historical reanalysis and future climate model datasets. The dataset includes model...
Buster, G. et al National Renewable Energy Lab (NREL)
Oct 16, 2024
2 Resources
0 Stars
Publicly accessible

Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications

To address the need for regularly updated wind resource data, NREL has processed the High-Resolution Rapid Refresh (HRRR) outputs for use in grid integration modeling. The HRRR is an hourly-updated operational forecast product produced by the National Oceanic and Atmospheric Admin...
Buster, G. et al National Renewable Energy Lab (NREL)
Oct 15, 2024
7 Resources
0 Stars
Publicly accessible

Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC)

The Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC) data is a collection of 4km hourly wind, solar, temperature, humidity, and pressure fields for the contiguous United States under various climate change scenarios. Sup3rCC is downscaled ...
Buster, G. et al National Renewable Energy Laboratory (NREL)
Apr 19, 2023
7 Resources
2 Stars
Publicly accessible

BUTTER Empirical Deep Learning Dataset

The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four le...
Tripp, C. et al National Renewable Energy Laboratory
May 20, 2022
4 Resources
0 Stars
Publicly accessible
  • About the Open Energy Data Initiative
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The OEDI Data Lake is a centralized repository of datasets aggregated from the U.S. Department of Energy’s Programs, Offices, and National Laboratories.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service